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Steady two-dimensional viscous motion within a circular cylinder generated by 
(a)  the rotation of part of the cylinder wall and (b)  fluid entering and leaving 
through slots in the wall is considered. Studied in particular are moving-surface 
problems with continuous and discontinuous surface speeds, simple inflow- 
outflow problems and the impinging-jet problem within a circle. The analytical 
solutions at  zero Reynolds number are given for the last two types of problem. 
Numerical results are obtained at various Reynolds numbers from the integral 
representation of the solution. At zero Reynolds number this approach involves 
a quadrature around the circumference of the cylinder. At other Reynolds 
numbers it involves an iterative-integral technique based on the use of the 
‘ clamped-plate ’ biharmonic Green’s function. 

1. Introduction 
Streaming flows past a circular cylinder have an extensive literature, whereas 

flows occurring within a single circular cylinder have received comparatively 
little attention. No solution of the external streaming-flow problem exists at  zero 
Reynolds number (Stokes’ paradox), but this is not true of the interior problem. 
The solution can be given as an integral around the circumference of the cylinder 
or as an infinite series. It can be given in closed form in some special cases. These 
internal flows may occur through (a )  the rotation of part (or all) of the cylinder 
wall or ( b )  fluid entering and leaving the cylinder normal to the wall. These 
problems are of interest physically as they are representative of two distinct 
types of motion which occur frequently in practice. Type (a )  problems arise in 
the recirculating motion in cavities in aerodynamic surfaces (Batchelor 1956; 
Squire 1956), while type ( b )  problems arise, for instance, in the ventilation of 
confined spaces (Baturin 1959). 

Rayleigh (1893) seems to have been the first to consider these fluid motions 
mathematically and derived analytical sohitions for simplified type (a) and 
type (b )  problems. Mabey (1957) gave the analytical solution at zero Reynolds 
number for a physically realistic type (a )  problem, Burgraff (1966) later con- 
structing a solution for arbitrary Reynolds number from an Oseen-type lineariza- 
tion of the full equations of motion. Further type (a )  problems have been com- 
puted by Kuwahara & Imai (1969), while Dennis (1974) has computed a problem 
of type (6). The present paper gives analytical and numerical results for certain 
type (a )  and type ( b )  problems. 
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In  contrast to the usual finite-difference approach, it is of interest to compute 
these internal flows from their integral representation, both at zero Reynolds 
number and at Reynolds numbers in the intermediate range. The case of zero 
Reynolds number requires only a quadrature around the circumference of the 
cylinder. The case of intermediate Reynolds numbers involves the development 
of an iterative-integral technique which is based on the use of the biharmonic 
Green’s function. This technique will be described in this paper. Harmonic 
Green’s functions have been used in viscous flow computation (Panniker & Lavan 
1976), but this approach still requires the use of the finite-difference method for 
the solution of the vorticity equation. 

2. Governing equations 
With a suitable length and speed to define non-dimensional variables the 

equation of steady viscous incompressible fluid flow is 

(q. V) q = - Vp + R-lV2q, (1) 
where q is the velocity vector, p is the pressure and R is the Reynolds number of 
the motion. 

Consider two-dimensional motion and take plane polar co-ordinates ( r ,  0) with 
velocity components (u?, u,) such that the vorticity vector < = curl q has only 
one component 

normal to the r,  0 plane. If a stream function + is introduced by 

ur = r-la$-/ae, U, = - - a $ p ,  (3) 

then. the equation of continuity 

is satisfied automatically. On introducing (3) into (2) and taking the curl of both 
sides of ( l ) ,  we find that the equations of motion take the form 

V2$ = - cg, (5 )  

where 

This coupled pair of second-order elliptic equations (5) and (6) for + and y may 

(7) 

be combined into the single fourth-order nonlinear equation 

V4$ = - Rr-l a($) V2$)/a(r,  0) = - R J($, V2$), 

where V4 = V2(V2) is the biharmonic operator and J is the Jacobian operator, For 
slow viscous flow ( R  + 0 ) ,  (7) reduces to the biharmonic equation 

v4+ = 0. (8  
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3. Slow viscous flow solutions 
Now consider the motion inside a circular cylinder of radius a whose centre is 

at the origin of the co-ordinates. Series solutions can be constructed from the 
following fundamental solutions of the biharmonic equation attributed to 
Michell (1899) (e.g. see Timoshenko & Goodier 1951, p. 116): 

m m 

$ = ao+bor2+ (anrn+bnrn+2)cosn6+ C (cnrn+d,rn+2)sinn0. (9) 
n= 1 n = l  

The coefficients a,, bi, ci and di have to be determined by satisfying the boundary 
conditions of the present problems, viz. 

$ = f(6), a$/&= - U  - - g(6) on r = 1. (lo), (11)  

By the method that is used to derive Poisson’s integral formula from its 
Fourier-series form (e.g. seeDennemeyer 1968, p. 107), it  can readily be established 
that the above series solution is equivalent to the integral solution 

This solution is of course well known in the theory of elasticity. It is worth 
observing that (12) can also be built up with the aid of Poisson’s integral by 
looking for a solution of the form 

$ = (r2-1)$l+$2> (13) 

where $, and $2 are harmonic functions (e.g. see Tychonov & Samarski 1964, 
p. 361). 

Moving-wall problems 

In  these problems the motion is completely enclosed and is generated by the 
rotation of part of the circumference. Here we use the radius of the cylinder and 
the (constant) speed on the moving part of the surface to define non-dimensional 
variables, so that the Reynolds number of the motion is 

RM = Ua/v 

(see figure 1). Rayleigh (1893) appears to have been the first to give a solution at 
RM = 0 for a problem of this kind. His solution corresponds to the application of 
an infinite tangential speed over an infinitely small arc. The solution for the more 
practical case of a finite length of arc moving at finite speed seems to have been 
first given by Mabey (1957). At high Reynolds numbers this type of flow, i.e. 
cavity flow’, has been suggested as a model for the motion in real physical 

cavities (Batchelor 1956; Squire 1956). The present author has given theoretical 
and experimental results and also solved the equations of motion numerically for 
some special cases of this type of flow (e.g. see Mills 1964, 1965). 
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U 

FIGURE 1. Moving-surface problem. 

The boundary conditions (10) and (1 1) are here 

f = O ,  0 < 8 < 2 n ,  

The solution is readily found from (9) to be 

rn cos n8 
4n n= 1 

+ 2  12= g 1 (cosna-cosn,!l n ) rnsinn8]. (17) 

From (12) it is easy to derive the closed-form version of this solution : 

t a n e )  - tan-1 (- 13.r tan")], (18) 2n 2 1-r  2 

0, p-n < 8 < a+n, 

n, a+n < 8 < p+n, where Y = {  

and the Cauchy principal value of the integral has been used. These solutions 
were first given, in a slightly different form, by Mabey (1957). 

In  the case 01 = 0, @ = n, the streamlines of the motion have been computed 
from the integral representation (12) using the boundary conditions (15) and (16). 
The trapezium rule was used for the quadrature. As the boundary conditions 
involve discontinuous changes, it was not considered worth while to use a more 
accurate quadrature formula. The interval of integration was simply reduced 
progressively until a prescribed accuracy was obtained in the solution at every 
computed point in the flow field. The results were checked against the series 
representation (17) and also against the closed form (18). Roughly similar com- 
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puting times were required to determine the solution to a given accuracy from 
the integral representation and the infinite-series representation, these repre- 
sentations sharing the property that it takes longer to compute the solution at  
points near the boundary than at points near the centre of the circle. The stream- 
lines are given in figure 4 (u). A similar figure was produced by Mabey with the 
aid of a geometrical representation of the solution (18). Mabey also photographed 
the motion in an experiment and his experimental streamlines are in good 
agreement with the theoretical streamlines. 

A very simple example of this kind of flow has been given by Kuwahara & 
Imai (1969) .  It corresponds to the zero Reynolds number solution 

?,h = $(1-r2)(1+rcos8), (19 )  

g(e) = - + cos el. ( 2 0 )  

with the boundary velocity function 

This flow would be difficult to realize in practice, but it affords a simple test for 
our numerical methods. Moreover, it  is a very convenient test for the numerical 
verification of Batchelor’s (1956) constant-vorticity theorem. For this problem, 
the constant vorticity of the core at large Reynolds numbers can easily be shown 
to be 

following Wood (1957) .  
( 2 1 )  I;, = (B4 

InJEow-outjtow problems 

We now consider problems where a$/& = 0 and ?,his specified along the boundary, 
in particular the class of problems defined in figure 2.  First, consider the simple 
inflow-outflow problem corresponding to E” = e” = 0. Use the radius a, the 
speed U and half the flow Urn across the arc DC (or AB) to define non-dimensional 
variables. The Reynolds number of the flow is then 

RI = UCE/U, (22 )  

where v is the kinematic viscosity coefficient of the fluid. 
For this problem, the boundary conditions ( 1 0 )  and ( 1 1 )  are 

1 

1 < 8 < a+€’, 

a+€’ < 6 < p - s ,  

f = l + E - y p - t q ,  p-e  <e < p+e,  

p + e  < e < 2 n + a ,  

g(e) = 0, o G e G 2n. 

I: 
and 

The Fourier coefficients in ( 9 )  then become 

a, = n-l(p-a), b, = 0, 

(23 )  

(24 )  

sin nE n 
sinn,!?), bn = -- sin na - - 

n + 2 a n 9  8 
a = -  n 

cos np) , d, = - - n + 2  sinns‘ sin ne 
en=-- - cos na - - n-+2C”- n 1  nn2 ( €1 8 
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FIGURE 2. Inflow-outflow problem. 

The streamlines of the motion for the two cases a = 0, /3 = n, E = E' = &in and 
u = &r, ,5 = T, E = E' = &TI were first computed from the integral representation 
of the solution (12) withf(6) and g(0)  given by (23) and (24), using the trapezium 
rule as before. These results were then checked by computing the solution from 
the infinite series. Only the results for the second case are given here (see figure 6a),  
as the first (symmetric) case has now been given by Dennis (1974). In  passing, we 
remark that Rayleigh's solution corresponds to our inlet and outlet shrinking 
in size until they become a point source and sink respectively, at opposite ends 
of the horizontal diameter in the case a = 0, /3 = n. 

Next, consider the problem which corresponds to setting E' = E" = E" = E ,  

U' = U" = U" = U ,  a = an, /3 = n, y = $n and S = 2n. This case is of funda- 
mental interest in that it involves the direct impact of two viscous jets. With the 
same non-dimensional variables as before, the boundary conditions are 

f =  

and 
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The Fourier coefficients for this problem are then 

U, = 1, bo = 0, a, = 0, b, = 0, 

nm - 1 +cos- 
2 

n + 2 sin ne c, = -- 
nn2 E 

d, = - - 

The streamlines were computed from (9) and (28) and also from the integral 
representation and the results are given in figure 7 (a).  The streamlines are shown 
only in the first quadrant, because of symmetry. 

The attractive feature of the boundary-integral method for computing the 
present slow viscous flow problems is the comparative ease with which it can 
handle complicated boundary-condition functions f (8) and g(8), since only a 
quadrature around the circumference is required. Care shouId of course be 
exercised in the choice of quadrature formula depending on the nature of f(8) 
and g(8). For instance, one should use the trapezium rule with small intervals if 
these functions have any step discontinuities, as in the present examples. It 
should be noted that adequate handling of the boundary conditions of inflow- 
outflow problems with narrow inlets or outlets by other numerical methods 
presents rather greater difficulties, such as the need for intensive local mesh 
refinement in the finite-difference approach. 

4. Numerical solutions at non-zero Reynolds numbers 
Green's function method 

The basic idea is to construct a solution in integral form with the aid of the 
appropriate Green's function. Starting from Green's identity, we can easily 
derive the relation (see Garabedian 1964, chap. 7)  

where D is some closed region of the x, y plane with boundary curve C whose 
outward normal is denoted by n, as in figure 3. Now associate x with the biharmonie 
Green's function G defined by 

V4G = 6(x-<, y-7) in D, 
G = aGpn = 0 on C, 

where S is the Dirac delta function. Then from (29) the solution of the inhomo- 
geneous boundary-value problem 

v4+ = F(x,  Y) in D, 
$ =f(s), a$/an = g(s) on C 

where 

(32) 

(33) 
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FICI~RE 3. General closed region. 

is the solution of the Jirst biharmonic boundary-value problem 

(34) 
v4p = 0 in D, 

$0 = f ( ~ ) ,  a$O/an = g(s) on C .  

The solution of the linear boundary-value problem (31) thus reduces to the 
determination of the biharmonic Green’s function G for the appropriate region D. 
This approach is of course well known in the theory of elasticity. 

To apply this method to the nonlinear Navier-Stokes equation (7), we can 
regard the right-hand side of (7) as a known function a t  each cycle k of the 
iterative process : 

” ”  

Equation (35) is thus made the basis of a numerical method for solving the 
Navier-Stokes equations. This simple notion of an iterative-integral (i.e. 
Picard-type) method has also been used successfully by the present author for 
solving the laminar boundary-layer equations (Mills 1974). 

The main analytical difficulty in the present approach is of course the determi- 
nation of the biharmonic Green’s function for a general region D. However, this 
function can easily be obtained for a circular region. In  terms of the complex 
variables z = z + i y  and 6 = <+iq the result is (see Garabedian 1964, p. 272) 

where the overbar denotes the complex conjugate and 6 is not to be confused 
with the vorticity. If we change to polar co-ordinates given by z = reie and 
6 = p ei$, we fhd  after some routine manipulation that (35) takes the form 

$k+l(r, 0) = - R 
(37) 
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where 

p2 + r2 - 2pr cos (4 - 0) 
l+pzr2-2prcos(q5-O) 

(38) 

1 
1677 

G = - [p2 + r2 - 2pr cos (q5 - O)] In 

and $O is given by (12). 
The numerical method of solution is as follows. The slow viscous flow solution 

1C.O is used as the ‘starting’ (k = 0) solution in the above iterative scheme. 
A separate field is used for the vorticity f; = - V2$. For all mesh points except 
those on the circle C- one radial mesh length 6r from the boundary, the Jacobian 
is computed using the usual central-difference formulae for the derivatives. We 
use $ii to denote @(i&,j&O), etc., and let m and n be the number of intervals in the 
circumferential and radial directions respectively. For points on C- the ac/ap 
term in the Jacobian is replaced using the three-point ‘ backward-difference ’ 
formula (accurate to order ( 6 ~ ) ~ )  

to avoid the necessity of knowing the boundary values of C, as is required in the 
finite-difference methods. (Such a requirement would defeat the purpose of using 
the integral representation (37) and (38), which has the appropriate boundary 
conditions already ‘built in’.) The double integral in (37) is computed with the 
aid of the very simple quadrature formula 

n-1 m 

So”“/If (P,q5)PdPdq5 = J P W  i=lj=1 c x Pi& (40) 

derived by applying the trapezium rule to the variables p and q5 in turn and 
observing that the integrand f = GJ vanishes on the boundary circle, where i = n. 
Our method requires a source point Q(if6p,j‘6q5) to coincide with an argument point 
P(iSr , jM) once for each double integration with respect to p and q5. Even though 
the biharmonic Green’s function G vanishes it is still singular when P = Q (giving 
the fundamental biharmonic singularity, in fact), and consequently it was not 
considered worth while to use a mare accurate quadrature formula. 

To obtain convergence we had to use two relaxation factors w and w f  for the - 

C and $ fields: 

+y = w ‘ + p  + (1 --of) $fj, (42) 
where the starred quantities represent t,he ‘theoretical’ values at each cycle. We 
were guided in this by the need to use two relaxation factors in the iterative- 
integral method of solution of the boundary-layer equations (Mills 1974). The 
iteration was continued until a suitable convergence criterion was satisfied (e.g. 
as in Mills 1968). The final solution was always checked independently by applying 
the standard hite-difference formula 
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(4 

FIQURE 4. Moving-surfaoe problems. (a) g(0) given by (16); RM = 0. ( b )  g(0) given by (16); 
RM = 25, Sr = &, 60 = -L- 2 0 7 r ,  w = 0-3, u' = 0.3. (c) g(0) = -+ ( I  + c o s ~ ) ;  R~ = 16, 6r = &, 
88 = &n, w = 0.3, w' = 0.3. 0, Kuwahara & Imai's results. 

to each nodal point at the end of the computation and comparing the results with 
- v2$hij. 

With regard to efficient programming, the Green's function G(r4, BS; pi., q5f) 
can be computed once and for all and stored in a symmetric three-dimensional 
array, since G(ri,  Oj; pi., q5j,) = G(r4,pi., I j  -j') 68) = G(pi., ri,j"68), where 68 is the 
angular mesh size. To store G(ri, 8,; pi., q5j,) for all the possible permutations of 
(Qj, i',j') would make large demands on storage even for moderate mesh sizes. 
Otherwise, we should have to compute G(r4, Oj; pi., q5f) about m2n2 times every 
iteration, which would Iead to large computing times because of the cosine and 
logarithm functions in G .  

This numerical method was applied to the moving-surface problem and to the 
inflow-outflow problem, the cases computed being shown in figure 4 and figures 6 
and 7. The appropriate mesh sizes, Reynolds numbers and relaxation factors are 
given in the figure captions. I n  the inflow-outflow problem the mesh sizes were 
chosen such that no mesh points coincided with the sharp edges, while in the 
moving-surface problem with discontinuities (figure 4 b )  the co-ordinate system 
was rotated relative to the boundary by half the angular mesh size to avoid the 
discontinuities. 
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(c) 

FIGURES 4 ( b ) ,  ( c ) .  For legend see p. 618. 
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FIUURE 5 .  Vorticity distribution on 2 axis. 0, ---, 
Kuwaham C Imai’s results. g(8) = - 3( 1 + cos 8). 

5. Discussion of results 
For the test problem of Kuwahara & Imai, our method gives results in excellent 

agreement with theirs (see figure 4c). Also presented are results for the vorticity 
distribution along the x axis for various Reynolds numbers (figure 5 ) .  It is clear 
that the vorticity in the central ‘core’ region is tending to the constant value 
given by (21). We have not attempted to carry our computation above RIM = 64 
since our mesh Reynolds number R, is becoming rather high for convergence of 
the iterative process and small enough truncation errors. Kuwahara & Imai, 
however, give results for RM = 1024 which certainly bear out the model with a 
constant-vorticity core. The moving-surface problem of Mabey was computed 
for RM = 25 and the results are shown in figure 4(b). This problem is more 
complex in having two discontinuous changes in tangential velocity on the surface 
of the cylinder. 

Recirculation does not occur at zero Reynolds number in the simple inflow- 
outflow problems computed. This is also true of Rayleigh‘s solution, as can easily 
be proved. Rayleigh made in 1893 the comment that the formation of an eddy or 
backwater would result from the nonlinear terms in the equation of motion. I n  
the asymmetric case presented here i t  was found that the lower eddy first appears 
at a value of R, somewhere between 2.4 and 2.5 (see figure 6 b ) .  The upper eddy 
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first appears at  an RI between 2.5 and 2.6, and figures 6(c) and (d) show the 
development of the recirculation regions as the Reynolds number increases 
further. 

In  the impinging-jet problem symmetry was preserved at all the Reynolds 
numbers considered (figure 7). No recirculation occurs a t  zero Reynolds number 
(figure 7a) .  The eddies first appear at a value of RI somewhere in the interval 
3.0-3-1. It is of interest that stable numerical solutions persist for Reynolds 
numbers up to 10 at least. However, numerical instability begins to set in a t  
about RI = 15, and this may be associated with the onset of unsteadiness in the 
physical flow. 

In  addition to the built-in check on the method, mentioned earlier, we have 
checked the method against results obtained by the standard finite-difference 
method and found good agreement. If efficiently programmed, the method is 
comparable to the standard method in overall computational efficiency. It is 
especially recommended for those problems which have discontinuities and for 
which the analytical solutions at zero Reynolds number are known, as in the 
examples presented. In  closing we remark that the method could be applied 
to regions other than the circle with the aid of the appropriate conformal 
transformation. 

The author is grateful for the receipt of the necessary time on the Glasgow 
University KDPS, the NELUnivac 1108 and the Numac IBM 370/168 computers. 
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